Source code for pymc_marketing.mmm.causal

#   Copyright 2022 - 2025 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""Causal module."""

from __future__ import annotations

import re
import warnings

try:
    import networkx as nx
except ImportError:  # Optional dependency
    nx = None  # type: ignore[assignment]
import pandas as pd
import pymc as pm
import pytensor.tensor as pt
from pydantic import Field, InstanceOf, validate_call
from pymc_extras.prior import Prior

try:
    from dowhy import CausalModel
except ImportError:

    class LazyCausalModel:
        """Lazy import of dowhy's CausalModel."""

        def __init__(self, *args, **kwargs):
            msg = (
                "To use Causal Graph functionality, please install the optional dependencies with: "
                "pip install pymc-marketing[dag]"
            )
            raise ImportError(msg)

    CausalModel = LazyCausalModel


[docs] class BuildModelFromDAG: """Build a PyMC probabilistic model directly from a Causal DAG and a tabular dataset. The class interprets a Directed Acyclic Graph (DAG) where each node is a column in the provided `df`. For every edge ``A -> B`` it creates a slope prior for the contribution of ``A`` into the mean of ``B``. Each node receives a likelihood prior. Dims and coords are used to align and index observed data via ``pm.Data`` and xarray. Parameters ---------- dag : str DAG in DOT format (e.g. ``digraph { A -> B; B -> C; }``) or as a simple comma/newline separated list of edges (e.g. ``"A->B, B->C"``). df : pandas.DataFrame DataFrame that contains a column for every node present in the DAG and all columns named by the provided ``dims``. target : str Name of the target node present in both the DAG and ``df``. This is not used to restrict modeling but is validated to exist in the DAG. dims : tuple[str, ...] Dims for the observed variables and likelihoods (e.g. ``("date", "channel")``). coords : dict Mapping from dim names to coordinate values. All coord keys must exist as columns in ``df`` and will be used to pivot the data to match dims. model_config : dict, optional Optional configuration with priors for keys ``"intercept"``, ``"slope"`` and ``"likelihood"``. Values should be ``pymc_extras.prior.Prior`` instances. Missing keys fall back to :pyattr:`default_model_config`. Examples -------- Minimal example using DOT format: .. code-block:: python import numpy as np import pandas as pd from pymc_marketing.mmm.causal import BuildModelFromDAG dates = pd.date_range("2024-01-01", periods=5, freq="D") df = pd.DataFrame( { "date": dates, "X": np.random.normal(size=5), "Y": np.random.normal(size=5), } ) dag = "digraph { X -> Y; }" dims = ("date",) coords = {"date": dates} builder = BuildModelFromDAG( dag=dag, df=df, target="Y", dims=dims, coords=coords ) model = builder.build() Edge-list format and custom likelihood prior: .. code-block:: python from pymc_extras.prior import Prior dag = "X->Y" # equivalent to the DOT example above model_config = { "likelihood": Prior( "StudentT", nu=5, sigma=Prior("HalfNormal", sigma=1), dims=("date",) ), } builder = BuildModelFromDAG( dag=dag, df=df, target="Y", dims=("date",), coords={"date": dates}, model_config=model_config, ) model = builder.build() """
[docs] @validate_call def __init__( self, *, dag: str = Field(..., description="DAG in DOT string format or A->B list"), df: InstanceOf[pd.DataFrame] = Field( ..., description="DataFrame containing all DAG node columns" ), target: str = Field(..., description="Target node name present in DAG and df"), dims: tuple[str, ...] = Field( ..., description="Dims for observed/likelihood variables" ), coords: dict = Field( ..., description=( "Required coords mapping for dims and priors. All coord keys must exist as columns in df." ), ), model_config: dict | None = Field( None, description=( "Optional model config with Priors for 'intercept', 'slope' and " "'likelihood'. Keys not supplied fall back to defaults." ), ), ) -> None: self.dag = dag self.df = df self.target = target self.dims = dims self.coords = coords # Parse graph and validate target self.graph = self._parse_dag(self.dag) self.nodes = list(nx.topological_sort(self.graph)) if self.target not in self.nodes: raise ValueError(f"Target '{self.target}' not in DAG nodes: {self.nodes}") # Merge provided model_config with defaults provided = model_config self.model_config = self.default_model_config if provided is not None: self.model_config.update(provided) # Validate required priors are present and of correct type self._validate_model_config_priors() # Validate coords are present and consistent with dims, priors, and df self._validate_coords_required_are_consistent() # Validate prior dims consistency early (does not require building the model) self._warning_if_slope_dims_dont_match_likelihood_dims() self._validate_intercept_dims_match_slope_dims()
@property def default_model_config(self) -> dict[str, Prior]: """Default priors for intercepts, slopes and likelihood using ``pymc_extras.Prior``. Returns ------- dict Dictionary with keys ``"intercept"``, ``"slope"`` and ``"likelihood"`` mapping to ``Prior`` instances with dims derived from :pyattr:`dims`. """ slope_dims = tuple(dim for dim in (self.dims or ()) if dim != "date") return { "intercept": Prior("Normal", mu=0, sigma=1, dims=slope_dims), "slope": Prior("Normal", mu=0, sigma=1, dims=slope_dims), "likelihood": Prior( "Normal", sigma=Prior("HalfNormal", sigma=1), dims=self.dims, ), } @staticmethod def _parse_dag(dag_str: str) -> nx.DiGraph: """Parse DOT digraph or edge-list string into a directed acyclic graph.""" if nx is None: raise ImportError( "To use Causal Graph functionality, please install the optional dependencies with: " "pip install pymc-marketing[dag]" ) # Primary format: DOT digraph s = dag_str.strip() g = nx.DiGraph() if s.lower().startswith("digraph"): # Extract content within the first top-level {...} brace_start = s.find("{") brace_end = s.rfind("}") if brace_start == -1 or brace_end == -1 or brace_end <= brace_start: raise ValueError("Malformed DOT digraph: missing braces") body = s[brace_start + 1 : brace_end] # Remove comments (// ... or # ... at line end) lines = [] for raw_line in body.splitlines(): line = re.split(r"//|#", raw_line, maxsplit=1)[0].strip() if line: lines.append(line) body = "\n".join(lines) # Find edges "A -> B" possibly ending with ';' for m in re.finditer( r"\b([A-Za-z0-9_]+)\s*->\s*([A-Za-z0-9_]+)\s*;?", body ): a, b = m.group(1), m.group(2) g.add_edge(a, b) # Find standalone node declarations (lines with single identifier, optional ';') for raw_line in body.splitlines(): line = raw_line.strip().rstrip(";") if not line or "->" in line or "[" in line or "]" in line: continue mnode = re.match(r"^([A-Za-z0-9_]+)$", line) if mnode: g.add_node(mnode.group(1)) else: # Fallback: simple comma/newline-separated "A->B" tokens edges: list[tuple[str, str]] = [] for token in re.split(r"[,\n]+", s): token = token.strip().rstrip(";") if not token: continue medge = re.match(r"^([A-Za-z0-9_]+)\s*->\s*([A-Za-z0-9_]+)$", token) if not medge: raise ValueError(f"Invalid edge token: '{token}'") a, b = medge.group(1), medge.group(2) edges.append((a, b)) g.add_edges_from(edges) if not nx.is_directed_acyclic_graph(g): raise ValueError("Provided graph is not a DAG.") return g def _warning_if_slope_dims_dont_match_likelihood_dims(self) -> None: """Warn if slope prior dims differ from likelihood dims without the 'date' dim.""" slope_prior = self.model_config["slope"] likelihood_prior = self.model_config["likelihood"] like_dims = getattr(likelihood_prior, "dims", None) if isinstance(like_dims, str): like_dims = (like_dims,) elif isinstance(like_dims, list): like_dims = tuple(like_dims) # Guard against None dims (treat as empty) if like_dims is None: expected_slope_dims = () else: expected_slope_dims = tuple(dim for dim in like_dims if dim != "date") slope_dims = getattr(slope_prior, "dims", None) if slope_dims is None or not isinstance(slope_dims, tuple): slope_dims = () elif isinstance(slope_dims, str): slope_dims = (slope_dims,) elif isinstance(slope_dims, list): slope_dims = tuple(slope_dims) if slope_dims != expected_slope_dims: warnings.warn( ( "Slope prior dims " f"{slope_dims if slope_dims else '()'} do not match expected dims " f"{expected_slope_dims} (likelihood dims without 'date')." ), stacklevel=2, ) def _validate_intercept_dims_match_slope_dims(self) -> None: """Ensure intercept prior dims match slope prior dims exactly.""" def _to_tuple(maybe_dims): if maybe_dims is None: return tuple() if isinstance(maybe_dims, str): return (maybe_dims,) if isinstance(maybe_dims, (list, tuple)): return tuple(maybe_dims) return tuple() slope_dims = _to_tuple(getattr(self.model_config["slope"], "dims", None)) intercept_dims = _to_tuple( getattr(self.model_config["intercept"], "dims", None) ) if slope_dims != intercept_dims: raise ValueError( "model_config['intercept'].dims must match model_config['slope'].dims. " f"Got intercept dims {intercept_dims or '()'} and slope dims {slope_dims or '()'}." ) def _validate_model_config_priors(self) -> None: """Ensure required model_config entries are Prior instances. Enforces that keys 'slope' and 'likelihood' exist and are Prior objects, so downstream code can safely index and call Prior helper methods. """ required_keys = ("intercept", "slope", "likelihood") for key in required_keys: if key not in self.model_config: raise ValueError(f"model_config must include '{key}' as a Prior.") for key in required_keys: if not isinstance(self.model_config[key], Prior): raise TypeError( f"model_config['{key}'] must be a Prior, got " f"{type(self.model_config[key]).__name__}." ) def _validate_coords_required_are_consistent(self) -> None: """Validate mutual consistency among dims, coords, priors, and data columns.""" if self.coords is None: raise ValueError("'coords' is required and cannot be None.") # 1) All coords keys must correspond to columns in the dataset for key in self.coords.keys(): if key not in self.df.columns: raise KeyError( f"Coordinate key '{key}' not found in DataFrame columns. Present columns: {list(self.df.columns)}" ) # 2) Ensure dims are present in coords for d in self.dims: if d not in self.coords: raise ValueError(f"Missing coordinate values for dim '{d}' in coords.") # 3) Ensure Prior.dims exist in coords (for all top-level priors we manage) def _to_tuple(maybe_dims): if isinstance(maybe_dims, str): return (maybe_dims,) if isinstance(maybe_dims, (list, tuple)): return tuple(maybe_dims) else: return tuple() for prior_name, prior in self.model_config.items(): if not isinstance(prior, Prior): continue for d in _to_tuple(getattr(prior, "dims", None)): if d not in self.coords: raise ValueError( f"Dim '{d}' declared in Prior '{prior_name}' must be present in coords." ) # 4) Enforce that likelihood dims match class dims exactly likelihood_prior = self.model_config["likelihood"] likelihood_dims = _to_tuple(getattr(likelihood_prior, "dims", None)) if likelihood_dims and tuple(self.dims) != likelihood_dims: raise ValueError( "Likelihood Prior dims " f"{likelihood_dims} must match class dims {tuple(self.dims)}. " "When supplying a custom model_config, ensure likelihood.dims equals the 'dims' argument." ) def _parents(self, node: str) -> list[str]: """Return the list of parent node names for the given DAG node.""" return list(self.graph.predecessors(node))
[docs] def build(self) -> pm.Model: """Construct and return the PyMC model implied by the DAG and data. The method creates a ``pm.Data`` container for every node to align the observed data with the declared ``dims``. For each edge ``A -> B``, a slope prior is instantiated from ``model_config['slope']`` and used in the mean of node ``B``'s likelihood, which is instantiated from ``model_config['likelihood']``. Returns ------- pymc.Model A fully specified model with slopes and likelihoods for all nodes. Examples -------- Build a model and sample from it: .. code-block:: python builder = BuildModelFromDAG( dag="A->B", df=df, target="B", dims=("date",), coords={"date": dates} ) model = builder.build() with model: idata = pm.sample(100, tune=100, chains=2, cores=2) Multi-dimensional dims (e.g. date and country): .. code-block:: python dims = ("date", "country") coords = {"date": dates, "country": ["Venezuela", "Colombia"]} builder = BuildModelFromDAG( dag="A->B, B->Y", df=df, target="Y", dims=dims, coords=coords ) model = builder.build() """ dims = self.dims coords = self.coords with pm.Model(coords=coords) as model: data_containers: dict[str, pm.Data] = {} for node in self.nodes: if node not in self.df.columns: raise KeyError(f"Column '{node}' not found in df.") # Ensure observed data has shape consistent with declared dims by pivoting via xarray indexed = self.df.set_index(list(dims)) xarr = indexed.to_xarray()[node] values = xarr.values data_containers[node] = pm.Data(f"_{node}", values, dims=dims) # For each node add slope priors per parent and likelihood with sigma prior slope_rvs: dict[tuple[str, str], pt.TensorVariable] = {} # Create priors in a stable deterministic order for node in self.nodes: parents = self._parents(node) # Slopes for each parent -> node mu_expr = 0 for parent in parents: slope_name = f"{parent.lower()}{node.lower()}" slope_rv = self.model_config["slope"].create_variable(slope_name) slope_rvs[(parent, node)] = slope_rv mu_expr += slope_rv * data_containers[parent] intercept_rv = self.model_config["intercept"].create_variable( f"{node.lower()}_intercept" ) self.model_config["likelihood"].create_likelihood_variable( name=node, mu=mu_expr + intercept_rv, observed=data_containers[node], ) self.model = model return self.model
[docs] def model_graph(self): """Return a Graphviz visualization of the built PyMC model. Returns ------- graphviz.Source Graphviz object representing the model graph. Examples -------- .. code-block:: python model = builder.build() g = builder.model_graph() g """ if not hasattr(self, "model"): raise RuntimeError("Call build() first.") return pm.model_to_graphviz(self.model)
[docs] def dag_graph(self): """Return a copy of the parsed DAG as a NetworkX directed graph. Returns ------- networkx.DiGraph A directed acyclic graph with the same nodes and edges as the input DAG. Examples -------- .. code-block:: python g = builder.dag_graph() list(g.edges()) """ if nx is None: raise ImportError( "To use Causal Graph functionality, please install the optional dependencies with: " "pip install pymc-marketing[dag]" ) g = nx.DiGraph() g.add_nodes_from(self.graph.nodes) g.add_edges_from(self.graph.edges) return g
[docs] class CausalGraphModel: """Represent a causal model based on a Directed Acyclic Graph (DAG). Provides methods to analyze causal relationships and determine the minimal adjustment set for backdoor adjustment between treatment and outcome variables. Parameters ---------- causal_model : CausalModel An instance of dowhy's CausalModel, representing the causal graph and its relationships. treatment : list[str] A list of treatment variable names. outcome : str The outcome variable name. References ---------- .. [1] https://github.com/microsoft/dowhy """
[docs] def __init__( self, causal_model: CausalModel, treatment: list[str] | tuple[str], outcome: str ) -> None: self.causal_model = causal_model self.treatment = treatment self.outcome = outcome
[docs] @classmethod def build_graphical_model( cls, graph: str, treatment: list[str] | tuple[str], outcome: str ) -> CausalGraphModel: """Create a CausalGraphModel from a string representation of a graph. Parameters ---------- graph : str A string representation of the graph (e.g., String in DOT format). treatment : list[str] A list of treatment variable names. outcome : str The outcome variable name. Returns ------- CausalGraphModel An instance of CausalGraphModel constructed from the given graph string. """ causal_model = CausalModel( data=pd.DataFrame(), graph=graph, treatment=treatment, outcome=outcome ) return cls(causal_model, treatment, outcome)
[docs] def get_backdoor_paths(self) -> list[list[str]]: """Find all backdoor paths between the combined treatment and outcome variables. Returns ------- list[list[str]] A list of backdoor paths, where each path is represented as a list of variable names. References ---------- .. [1] Causal Inference in Statistics: A Primer By Judea Pearl, Madelyn Glymour, Nicholas P. Jewell · 2016 """ # Use DoWhy's internal method to get backdoor paths for all treatments combined return self.causal_model._graph.get_backdoor_paths( nodes1=self.treatment, nodes2=[self.outcome] )
[docs] def get_unique_adjustment_nodes(self) -> list[str]: """Compute the minimal adjustment set required for backdoor adjustment across all treatments. Returns ------- list[str] A list of unique adjustment variables needed to block all backdoor paths. """ paths = self.get_backdoor_paths() # Flatten paths and exclude treatments and outcome from adjustment set adjustment_nodes = set( node for path in paths for node in path if node not in self.treatment and node != self.outcome ) return list(adjustment_nodes)
[docs] def compute_adjustment_sets( self, channel_columns: list[str] | tuple[str], control_columns: list[str] | None = None, ) -> list[str] | None: """Compute minimal adjustment sets and handle warnings.""" channel_columns = list(channel_columns) if control_columns is None: return control_columns self.adjustment_set = self.get_unique_adjustment_nodes() common_controls = set(control_columns).intersection(self.adjustment_set) unique_controls = set(control_columns) - set(self.adjustment_set) if unique_controls: warnings.warn( f"Columns {unique_controls} are not in the adjustment set. Controls are being modified.", stacklevel=2, ) control_columns = list(common_controls - set(channel_columns)) self.minimal_adjustment_set = control_columns + list(channel_columns) for column in self.adjustment_set: if column not in control_columns and column not in channel_columns: warnings.warn( f"""Column {column} in adjustment set not found in data. Not controlling for this may induce bias in treatment effect estimates.""", stacklevel=2, ) return control_columns